Who Can Win a Single-Elimination Tournament?

نویسندگان

  • Michael P. Kim
  • Warut Suksompong
  • Virginia Vassilevska Williams
چکیده

A single-elimination (SE) tournament is a popular way to select a winner in both sports competitions and in elections. A natural and well-studied question is the tournament fixing problem (TFP): given the set of all pairwise match outcomes, can a tournament organizer rig an SE tournament by adjusting the initial seeding so that their favorite player wins? We prove new sufficient conditions on the pairwise match outcome information and the favorite player, under which there is guaranteed to be a seeding where the player wins the tournament. Our results greatly generalize previous results. We also investigate the relationship between the set of players that can win an SE tournament under some seeding (so called SE winners) and other traditional tournament solutions. In addition, we generalize and strengthen prior work on probabilistic models for generating tournaments. For instance, we show that every player in an n player tournament generated by the Condorcet Random Model will be an SE winner even when the noise is as small as possible, p = Θ(lnn/n); prior work only had such results for p ≥ Ω( √ lnn/n). We also establish new results for significantly more general generative models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulating Stochastically Generated Single-Elimination Tournaments for Nearly All Players

We study the power of a tournament organizer in manipulating the outcome of a balanced single-elimination tournament by fixing the initial seeding. This problem is known as agenda control for balanced voting trees. It is not known whether there is a polynomial time algorithm that computes a seeding for which a given player can win the tournament, even if the match outcomes for all pairwise play...

متن کامل

Manipulating Single-Elimination Tournaments in the Braverman-Mossel Model

We study the power of a tournament organizer in manipulating the outcome of a single elimination tournament by fixing the initial seeding. It is not known whether the organizer can efficiently fix the outcome of the tournament even if the match outcomes are known in advance. We generalize a result from prior work by giving a new condition such that the organizer can efficiently find a tournamen...

متن کامل

Fixing Tournaments for Kings, Chokers, and More

We study the tournament fixing problem (TFP), which asks whether a tournament organizer can rig a single-elimination (SE) tournament such that their favorite player wins, simply by adjusting the initial seeding. Prior results give two perspectives of TFP: on the one hand, deciding whether an arbitrary player can win any SE tournament is known to be NP-complete; on the other hand, there are a nu...

متن کامل

Fixing a Tournament

We consider a very natural problem concerned with game manipulation. Let G be a directed graph where the nodes represent players of a game, and an edge from u to v means that u can beat v in the game. (If an edge (u, v) is not present, one cannot match u and v.) Given G and a “favorite” node A, is it possible to set up the bracket of a balanced single-elimination tournament so that A is guarant...

متن کامل

Rigging Tournament Brackets for Weaker Players

Consider the following problem in game manipulation. A tournament designer who has full knowledge of the match outcomes between any possible pair of players would like to create a bracket for a balanced single-elimination tournament so that their favorite player will win. Although this problem has been studied in the areas of voting and tournament manipulation, it is still unknown whether it ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016